759 research outputs found

    Combustive approach for measuring total volatile phosphorus content in landfill gas

    Get PDF
    A technique was developed to measure the total gaseous phosphorus content in biogas. The amount of air needed for a neutral to oxidising flame was mixed with the biogas. The gas mixture was burnt in a closed quartz burner and the combustion gasses were bubbled through a nitric acid solution. The phosphate content in the bubbling liquid was determined with sector field ICP-MS. The technique was validated in the lab with phosphine. Afterwards the set-up was installed on a landfill. The total gaseous phosphorus content in the landfill gas, measured with the combustive technique, ranged from 1.65 to 4.44 mug P/m(3). At the same time the phosphine concentration in the landfill gas was determined gas chromatographically (GC). The phosphine (PH3) content measured with GC ranged from 7.6 to 16.7 mug PH3-P/m(3). Since the phosphine-P content (GC) was consistently higher than the total gaseous phosphorus content (burner/ICP-MS), the hypothesised presence of highly toxic gaseous phosphorus compounds other than phosphine could not be demonstrated

    Speciation-analysis for recycling of critical elements in aqueous waste streams

    Get PDF
    Limited availability of inorganic commodities is one of the largest challenges for a future sustainable material use as set by European Commission. Growing life standards, demand for mobility and electronic devices require more and more specialty materials. Combining this economic importance and their supply risk, a class of critical materials is defined. PGM’s include Pt, Rh, Pd, Ir, Ru and Os. They possess unique properties, making them indispensable in autocatalysts, jewelry, electrical and electronical applications and industrial catalysts. PGM prices, with Pt being the far most important, have seriously risen in the last years. REE’s comprehend 17 elements with a large chemical similarity, essential in i.a. permanent magnets and related ‘clean energy’ applications such as wind turbines, rechargeable batteries and electric vehicles. Tight export quota set by the world’s largest exporting country of REE’s, China, hardly meet this rising demand

    Ultra-trace Cu isotope ratio measurements via multi-collector ICP-mass spectrometry using Ga as internal standard : an approach applicable to micro-samples

    Get PDF
    The capabilities of Cu isotope ratio measurements are often restricted by the small volumes of sample available and/or their low Cu concentration. In this work, an analytical approach was developed for performing Cu isotopic analysis via multi-collector ICP-mass spectrometry (MC-ICP-MS) at ultra-trace level using Ga as an internal standard for mass bias correction. The minimum concentration of Cu required for accurate and precise isotope ratio measurements was established to be 20 mu g L-1 with wet plasma conditions and 5 mu g L-1 with dry plasma conditions. The use of Ga as an internal standard for mass bias correction provided several advantages compared to Ni, i.e. improved internal precision on delta Cu-65 values and lower blank levels. Ga can also be used at a 4- fold lower concentration level than Ni. However, in wet plasma conditions, the signals of (ArO2H+)-Ar-36-O-16-H-1 and (ArNO+)-Ar-40-N-15-O-16 interfered with the signals of Ga-69(+) and Ga-71(+), respectively, while in dry plasma conditions, realized by the use of a desolvation unit, Ga-69(+) suffered from spectral interference from (ArN2H+)-Ar-40-N-14-H-1. These interferences were resolved by using medium mass resolution. For validation purposes, the approach was applied to commercially available blood and serum samples. The delta Cu-65 values for the samples measured at a concentration level of 5 mu g L-1 Cu and 5 mu g L-1 Ga using dry plasma conditions were in good agreement with those obtained for isotope ratio measurements at the "standard" concentration level of 200 mu g L-1 Cu and 200 mu g L-1 Ni using wet plasma conditions. In addition, the delta Cu-65 values obtained for micro-samples of serum/blood (volume of 100 mu L) were in good agreement with the corresponding ones obtained using the "standard" volume for isotopic analysis (500 mu L)

    Femtosecond laser ablation-ICP-mass spectrometry analysis of a heavy metallic matrix : determination of platinum group metals and gold in lead fire-assay buttons as a case study

    Get PDF
    Owing to the shorter time interval during which energy is delivered to the sample material, femtosecond (fs) laser ablation is preferable over nanosecond laser ablation for metallic samples. In this project, the influence of various laser parameters-beam diameter, repetition rate and laser fluence-on the ablation of Pb as a heavy metallic matrix using an infrared (lambda = 795 nm) fs-LA system (150 fs pulse duration) was studied. The merits of Ar and He as carrier gases were compared and as He did not provide a substantial improvement in the limits of detection, while deposition of sample material on the window of the ablation chamber was more pronounced, Ar was selected for all further measurements. The effect on the ICP caused by the introduction of various amounts of sample aerosol was studied by monitoring the signal intensity for Ar-38(+). It was shown that maximizing the amount of sample ablated and thus, the amount of sample aerosol introduced into the ICP, did not result in maximum sensitivity, which was rather obtained under 'compromise' conditions. Subsequently, femtosecond LA-quadrupole-based ICP-mass spectrometry (ICP-MS) was used for the determination of traces of the platinum group metals (PGMs) Rh, Pd, Ru, Ir and Pt and of Au in Pb buttons obtained by fire assay of platiniferous ore reference materials. The signal of Pb-204(+) was used as an internal reference, correcting for variations in the laser ablation and transport efficiencies and in the instrument's sensitivity. The spectral interferences established for some of the target nuclides due to the occurrence of Pb2+ ions were successfully overcome by pressurizing the reaction cell with NH3. Quantification versus a calibration curve constructed on the basis of the results obtained for matrix-matched standards (>99% Pb) provided excellent accuracy, superior to those obtained using nanosecond LA-ICP-MS. Also the limits of detection were improved by a factor ranging between 3 and 10 and are <0.010 mu g g(-1) for the most important PGMs (Rh, Pd, Pt) and Au. Several measures, such as the use of a large ablation cell and housing up to 10 Pb buttons, were taken to increase the sample throughput. In the same context, day-to-day reproducibility of the calibration curve was also examined. When recording a 'fresh' calibration curve every day, the average bias between the experimental results and the corresponding reference values was established to be <2.5% for every target element. When using one calibration curve during three consecutive days, the bias still remains <10%, while the sample throughput is increased and analysis of several tens of buttons per day is feasible (10-15 min total analysis time per sample)

    MS/MS studies on the selective on-line detection of sesquiterpenes using a Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS)

    Get PDF
    A Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of a series of seven sesquiterpenes (SQTs). These SQTs were chemically ionized by either H3O+ or NO+ reagent ions in the FA, resulting among others in protonated SQT and SQT molecular ions, respectively. These and other Chemical Ionization (CI) product ions were subsequently subjected to dissociation by collisions with Ar atoms in the collision cell of the tandem mass spectrometer. The fragmentation spectra show similarities with mass spectra obtained for these compounds with other instruments such as a Proton Transfer Reaction-Linear Ion Trap (PTR-LIT), a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), a Triple Quadrupole-Mass Spectrometer (QqQ-MS) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS). Fragmentation of protonated SQT is characterized by fragment ions at the same masses but with different intensities for the individual SQT. Distinction of SQTs is based on well-chosen intensity ratios and collision energies. The fragmentation patterns of SQT molecular ions show specific fragment ion tracers at m/z 119, m/z 162, m/z 137 and m/z 131 for alpha-cedrene, delta-neoclovene, isolongifolene and alpha-humulene, respectively. Consequently, chemical ionization of SQT by NO+, followed by MS/MS of SQT(+) seems to open a way for selective quantification of SQTs in mixtures
    • …
    corecore